剧本杀大家都玩过吗?这是一种经典的桌上角色扮演游戏(TTRPG), 游戏中的核心人物是游戏主持人(GM), 相当于整个世界的「导演 + 编剧 + 旁白」,负责掌控游戏环境,讲述故事背景,并扮演所有非玩家角色(NPC)。 


image.png


现在,想象一下,如果我们用一个强大的生成式 AI 来担任这个 GM 的角色,同时,桌子旁的「玩家」也换成一群各具头脑的 AI,这会创造出一个怎样的世界? 


这能实现以下应用:


  • 科学:构建虚拟社会,用于社会科学研究,观察群体行为的涌现。

  • 互动叙事:创建互动故事或游戏,AI 智能体扮演角色,共同演绎剧情。

  • AI 评估:设计特定场景作为「考场」,来测试和评估 AI 智能体的各项能力(如推理、协作、沟通)。


image.png

美剧《西部世界》, 未来的西部主题虚拟世界里,所有角色均是 AI 。 


然而,这三种需求(科学性、戏剧性、公平性)差异巨大,甚至相互冲突。如何用一个统一的框架来满足所有需求?


来自 Google DeepMind 和多伦多大学的研究人员从 TTRPG 和现代游戏引擎中获取灵感,提出了他们的解决方案:一个名为 Concordia 的软件库 。


image.png


  • 论文标题:Multi-Actor Generative Artificial Intelligence as a Game Engine

  • 论文地址:https://arxiv.org/abs/2507.08892

  • 项目地址:https://github.com/google-deepmind/concordia


传统上,游戏环境的逻辑是写死的程序。这里的主张是,不应该用一个硬编码的程序来充当 GM,而应该把 GM 本身也设计成一个可配置的、由 AI 驱动的智能体。


Concordia 的设计精髓,源自现代游戏引擎的「实体-组件」(Entity-Component)架构 。在这个架构里,无论是 AI 玩家还是 AI 游戏主持人(GM),都只是一个基础的「实体」容器 。它们具体拥有什么能力(比如记忆、目标或社交规则)则由一个个可插拔的「组件」来决定 。


这种方式巧妙地将「工程师」和「设计师」的角色分开:工程师负责创造功能强大的组件,而设计师则可以像搭乐高一样,自由组合这些组件来快速构建和测试各种复杂场景,整个过程几乎无需编写底层代码 。


实体、组件、引擎和游戏设计


实体 - 组件架构模式作为现代游戏开发的基石,为构建多角色生成式 AI 系统提供了强大而灵活的基础。


该框架采用组合而非继承机制,实体不再受限于僵化的类结构,而是携带唯一标识符的轻量级独立对象。实体的行为与属性完全由挂载的组件决定(即:实体本质是带有名称的组件容器)。引擎通过调用 observe、act 等函数处理实体,这些函数由实体所挂载的组件具体实现。


组件通过结合 Python 代码与 LLM 调用来实现,这种方式能提供最大的灵活性与表现力。当设计师掌握特定功能的编码方法时,可以自主实现;与此同时,同一环境中的其他功能可以通过让 GM 叙事型 LLM 来完成。这两种实现方式通常共存于同一环境中 —— 开发者既可以让 GM 根据 LLM 的自由发挥来创造内容,也可以严格限制其行为,使其完全遵循预设的硬编码规则,或采用介于二者之间的任何约束程度。


实体主要支持两种调用方式:observe 和 act


调用 observe 时,会触发所有组件的 preobserve 和 postobserve 函数,对每个实体的观察数据进行处理。调用 act 时,每个组件会扮演上下文和行动两种角色之一。


在实际开发 Concordia 组件时,开发者通常需要实现 preobserve、postobserve、preact 和 postact 四类方法中的部分或全部。常见做法是仅实现观察类方法或行动类方法,同一组件中同时实现两类方法的情况较为罕见。这种组件化模块设计允许通过自由组合不同组件,快速创建功能各异的实体 —— 这与传统面向对象编程形成鲜明对比:后者在创建行为略有差异的新角色类型时,往往会导致复杂脆弱的继承链结构。


对于生成式 AI 智能体而言,这种架构优势尤为显著。一个智能体的思维可由多个组件构成:存储过往经历的 Memory 组件、调用大语言模型生成目标的 Planning 组件,以及表征世界认知的 Beliefs 组件。同理,一个组织实体可由代表其部门、政策及内部沟通结构的组件组合而成。只需配置不同的组件组合,就能为不同智能体赋予差异化的认知架构。


这一架构模式的灵活性同样体现在 Concordia 框架中的 GM 系统上。GM 本身也是一个实体,与玩家实体(角色)一样可通过组件进行定制。这种设计使得 GM 的职能和逻辑能够根据多智能体系统的具体需求灵活调整 —— 无论是执行严格的评估协议、引导叙事发展,还是维护因果一致性。


此外,Concordia 框架还通过多种游戏引擎模式支持不同的交互动态。


游戏 / 模拟设计目标的全景图分析


根据 Edwards(他是桌游角色扮演游戏理论的重要人物)的定义 ,TTRPG 可以分为:(1)游戏型(Gamist),GM 需设计难度适中的挑战以维持乐趣。(2)叙事型(Narrativist),GM 需灵活调整剧情以回应玩家的创作输入。(3)模拟型(Simulationist),玩家希望沉浸在一个逻辑自洽的虚拟世界中。


本文认为将使用多角色生成式 AI 的动机分为以下几种类型是有帮助的:(1)评估型(Evaluationist),对应 Edwards 理论中的游戏型;(2)戏剧型(Dramatist),对于 Edwards 理论中的叙事型;(3)模拟型(Simulationist),Edwards 同名分类。


 生成式 AI 还有一个第四种动机,那就是创建合成训练数据的目标。


评估型的观点


游戏型玩家通常会寻求公平的竞争机会,并希望通过战略胜利来取得优势,而评估型用户则将多角色系统视为评估和比较的框架。


对于评估型用户来说,主要目标非常明确:确定哪些 AI 系统在指定维度和上下文中表现更好。这需要提供一个公平的竞争环境,并具有明确的成功指标。


评估型系统通常具有以下特点:


  • 标准化场景 —— 精心校准的环境,在多个评估运行中呈现一致的挑战;

  • 明确的成功指标 —— 可量化的性能衡量标准,允许对不同方法进行明确的排名;

  • 受控变异性 —— 战略性地引入新元素,以评估泛化能力;

  • 跨角色互动机制 —— 评估智能体在与不同合作伙伴群体互动时的表现的方法。


戏剧型视角


与评估型用户不同,戏剧型(Dramatist)用户主要将多角色生成式 AI 系统视为叙事引擎。


对于具有戏剧型的目标用户来说,核心关注点不是基准测试性能,而是通过多个 AI 角色的互动生成引人入胜的叙事。


从设计师的角度来看,针对戏剧型目标构建的系统将优先考虑叙事一致性、情感共鸣和动态人物发展,而不是标准化的评估。 


主要关注以下特点:


  • 丰富的角色模型 —— 具有详细个性、明确目标、价值观和关系的角色,通常通过组合多个组件来构建;

  • 叙事驱动的环境 —— 旨在引发戏剧性有趣互动的场景设置;

  • 灵活的解决机制 —— 优先考虑叙事满足感而非程序一致性的系统;

  • 涌现的故事情节 —— 允许在没有预定结果的情况下发展引人入胜的叙事轨迹的框架。


在接下来的章节中,论文还讨论了模拟型视角、合成数据等方面的研究,感兴趣的读者,可以参考原论文,了解更多内容。

☟☟☟

☞人工智能产业链联盟筹备组征集公告☜


精选报告推荐:

11份清华大学的DeepSeek教程,全都给你打包好了,直接领取:


【清华第一版】DeepSeek从入门到精通

【清华第二版】DeepSeek如何赋能职场应用?


【清华第三版】普通人如何抓住DeepSeek红利?

【清华第四版】DeepSeek+DeepResearch让科研像聊天一样简单?

【清华第五版】DeepSeek与AI幻觉

【清华第六版】DeepSeek赋能家庭教育

【清华第七版】文科生零基础AI编程:快速提升想象力和实操能力

【清华第八版】DeepSeek政务场景应用与解决方案

【清华第九版】迈向未来的AI教学实验

【清华第十版】DeepSeek赋能品牌传播与营销

【清华第十一版】2025AI赋能教育:高考志愿填报工具使用指南

 10份北京大学的DeepSeek教程

【北京大学第一版】DeepSeek与AIGC应用

【北京大学第二版】DeepSeek提示词工程和落地场景

【北京大学第三版】Deepseek 私有化部署和一体机

【北京大学第四版】DeepSeek原理与落地应用

【北京大学第五版】Deepseek应用场景中需要关注的十个安全问题和防范措施

【北京大学第六版】DeepSeek与新媒体运营

【北京大学第七版】DeepSeek原理与教育场景应用报告

【北京大学第八版】AI工具深度测评与选型指南

【北京大学第九版】AI+Agent与Agentic+AI的原理和应用洞察与未来展望

【北京大学第十版】DeepSeek在教育和学术领域的应用场景与案例(上中下合集)

8份浙江大学的DeepSeek专题系列教程

浙江大学DeepSeek专题系列一--吴飞:DeepSeek-回望AI三大主义与加强通识教育

浙江大学DeepSeek专题系列二--陈文智:Chatting or Acting-DeepSeek的突破边界与浙大先生的未来图景

浙江大学DeepSeek专题系列三--孙凌云:DeepSeek:智能时代的全面到来和人机协作的新常态

浙江大学DeepSeek专题系列四--王则可:DeepSeek模型优势:算力、成本角度解读

浙江大学DeepSeek专题系列五--陈静远:语言解码双生花:人类经验与AI算法的镜像之旅

浙江大学DeepSeek专题系列六--吴超:走向数字社会:从Deepseek到群体智慧

浙江大学DeepSeek专题系列七--朱朝阳:DeepSeek之火,可以燎原

浙江大学DeepSeek专题系列八--陈建海:DeepSeek的本地化部署与AI通识教育之未来

4份51CTO的《DeepSeek入门宝典》

51CTO:《DeepSeek入门宝典》:第1册-技术解析篇

51CTO:《DeepSeek入门宝典》:第2册-开发实战篇

51CTO:《DeepSeek入门宝典》:第3册-行业应用篇

51CTO:《DeepSeek入门宝典》:第4册-个人使用篇

5份厦门大学的DeepSeek教程

【厦门大学第一版】DeepSeek大模型概念、技术与应用实践

【厦门大学第二版】DeepSeek大模型赋能高校教学和科研

【厦门大学第三版】DeepSeek大模型及其企业应用实践

【厦门大学第四版】DeepSeek大模型赋能政府数字化转型

【厦门大学第五版】DeepSeek等大模型工具使用手册-实战篇

10份浙江大学的DeepSeek公开课第二季专题系列教程

【精选报告】浙江大学公开课第二季:《DeepSeek技术溯源及前沿探索》(附PDF下载)

【精选报告】浙江大学公开课第二季:2025从大模型、智能体到复杂AI应用系统的构建——以产业大脑为例(附PDF下载)

【精选报告】浙江大学公开课第二季:智能金融——AI驱动的金融变革(附PDF下载)

【精选报告】浙江大学公开课第二季:人工智能重塑科学与工程研究(附PDF下载)

【精选报告】浙江大学公开课第二季:生成式人工智能赋能智慧司法及相关思考(附PDF下载)

【精选报告】浙江大学公开课第二季:AI大模型如何破局传统医疗(附PDF下载)

【精选报告】浙江大学公开课第二季:2025年大模型:从单词接龙到行业落地报告(附PDF下载)

【精选报告】浙江大学公开课第二季:2025大小模型端云协同赋能人机交互报告(附PDF下载)

【精选报告】浙江大学公开课第二季:DeepSeek时代:让AI更懂中国文化的美与善(附PDF下载)

【精选报告】浙江大学公开课第二季:智能音乐生成:理解·反馈·融合(附PDF下载)

6份浙江大学的DeepSeek公开课第三季专题系列教程

【精选报告】浙江大学公开课第三季:走进海洋人工智能的未来(附PDF下载)

【精选报告】浙江大学公开课第三季:当艺术遇见AI:科艺融合的新探索(附PDF下载)

【精选报告】浙江大学公开课第三季:AI+BME,迈向智慧医疗健康——浙大的探索与实践(附PDF下载)

【精选报告】浙江大学公开课第三季:心理学与人工智能(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能赋能交通运输系统——关键技术与应用(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能与道德进步(附PDF下载)


相关阅读

干货推荐:
AI加油站】第一部:《大型语言模型应用检索增强生成:改变搜索、推荐和 AI 助手》附下载
【AI加油站】第二部:《程序员的自我修炼手册》(附下载)
【AI加油站】第三部:《大规模语言模型:从理论到实践》(附下载)
【AI加油站】第四部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第五部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第六部:《时间序列:建模、计算与推断》(附下载)
【AI加油站】第七部:《因果关系的逻辑理论的好书-A Logical Theory of Causality》(附下载)

【AI加油站】第八部:《模式识别(第四版)-模式识别与机器学习》(附下载)

【AI加油站】第九部:《Python深度学习(中文版)》(附下载)
【AI加油站】第十部:《机器学习方法》(附下载)
【AI加油站】第十一部:《深度学习》(附下载)
【AI加油站】第十二部:《从零开始的机器学习》(附下载)
【AI加油站】第十三部:《Transformer入门到精通》(附下载)
【AI加油站】第十四部:《LLM 应用开发实践笔记》(附下载)
【AI加油站】第十五部:《大模型基础 完整版》(附下载)
【AI加油站】第十六部:《从头训练大模型最佳实践》(附下载)
【AI加油站】第十七部:《大语言模型》(附下载)
【AI加油站】第十八部:《深度强化学习》(附下载)
【AI加油站】第十九部:清华大学《大模型技术》(附下载)
【AI加油站】第二十部:Prompt入门神书-《Prompt 学习指南》(附下载)
【AI加油站】第二十一部:吴恩达&open AI联合推出《大模型通关指南》(附下载)
【AI加油站】第二十二部:《李宏毅深度学习教程》值得反复阅读的神书!(附下载)
【AI加油站】第二十三部:Prompt经典中文教程-《提示工程指南》(附下载)
【AI加油站】第二十四部:爆火下载28万次!MIT最新神书《理解深度学习》(附下载)
【AI加油站】第二十五部:LLM4大名著,OpenAI专家强推《深度解析:大语言模型理论与实践》(附下载)
【AI加油站】第二十六部:NLP大牛Thomas Wolf等新书《Transformer自然语言处理》(附下载)
【AI加油站】第二十七部:哈工大博士耗时一年整理《PyTorch常用函数手册》,轻松掌握PyTorch的各种操作(附PDF下载)
【AI加油站】第二十八部:大模型炼丹大师必备《深度学习调优指南中文版-系统性优化模型》(附下载)
【AI加油站】第二十九部:炸裂发布!《大语言模型:导论》重磅发布!(附下载)
【AI加油站】第三十部:最值得读的LLM书!下载量10w+!《基于Transformer和扩散模型的生成式AI》(附下载)
【AI加油站】第三十一部:RL稀缺宝典!《强化学习的艺术》(附下载)
面试推荐:
【AI加油站】AI面试专题一:BIO,NIO,AIO,Netty面试题(附下载)
【AI加油站】AI面试专题二:Git常用命令面试题(附下载)
【AI加油站】AI面试专题三:Java常用面试题(附下载)
【AI加油站】AI面试专题四:Linux系统的面试题集(附下载)
【AI加油站】AI面试专题五:Memcached 面试题集(附下载)
【AI加油站】AI面试专题六:MyBatis框架的面试题(附下载)
【AI加油站】AI面试专题七:MySQL相关的面试题资料(附下载)
【AI加油站】AI面试专题八:Netty面试题资料(附下载)
【AI加油站】AI面试专题九:Nginx的面试题资料(附下载)
【AI加油站】AI面试专题十:RabbitMQ的面试题资料(附下载)
【AI加油站】AI面试专题十一:Redis的面试题资料(附PDF下载)
【AI加油站】AI面试专题十二:Spring的面试题资料(附PDF下载)
【AI加油站】AI面试专题十三:Apache Tomcat的面试题资料(附PDF下载)
【AI加油站】AI面试专题十四:Zookeeper的面试题资料(附PDF下载)
【AI加油站】AI面试专题十五:《阿里巴巴Java开发手册》终极版的面试题资料(附PDF下载)
【AI加油站】AI面试专题十六:大数据技术面试题资料(附PDF下载)
【AI加油站】AI面试专题十七:Java并发多线程面试题资料(附PDF下载)
【AI加油站】AI面试专题十八:设计模式的面试题资料(附PDF下载)
【AI加油站】AI面试专题十九:Java虚拟机(JVM)的面试题资料(附PDF下载)

人工智能产业链联盟高端社区




图片
精选主题推荐:
Manus学习手册
从零开始了解Manus

DeepSeek 高级使用指南,建议收藏

一次性说清楚DeepSeek,史上最全(建议收藏)

DeepSeek一分钟做一份PPT

用DeepSeek写爆款文章?自媒体人必看指南

【5分钟解锁DeepSeek王炸攻略】顶级AI玩法,解锁办公+创作新境界!

DeepSeek接入个人微信!24小时智能助理,随时召唤!
PS×Deepseek:一句话编写PS脚本,搞定PS批量导出图层
如何让AI给自己打工,10分钟创作一条爆款视频?
荐:
【中国风动漫】《姜子牙》刷屏背后,藏着中国动画100年内幕!
【中国风动漫】除了《哪吒》,这些良心国产动画也应该被更多人知道!

【中国风动漫】《雾山五行》大火,却很少人知道它的前身《岁城璃心》一个拿着十米大刀的男主夭折!

图片
声明

免责声明:部分文章和信息来源于互联网,不代表本订阅号赞同其观点和对其真实性负责。如转载内容涉及版权等问题,请立即与小编联系(微信号:913572853),我们将迅速采取适当的措施。本订阅号原创内容,转载需授权,并注明作者和出处。如需投稿请与小助理联系(微信号:AI480908961)

编辑:Zero

图片


图片
图片

图片