图片

【导读】强化学习,或许并不能通往AGI终点。Karpathy最新发文提出另一种Scaling范式,像人类一样反思回顾,通过复盘学习取得突破,更多的S形进步曲线等待发现。

Grok 4能站在大模型之巅,全是Scaling强化学习立了大功。

图片
图片

如今,AI大神Karpathy站出来急泼一盆冷水:

RL只是把最终成败的单一数值回传,效率随任务时长急剧下降。  


而且,RL与人类「反思-提炼-再应用」迭代机制存在巨大差异。


图片


图片
RL短期有效
真正突破在于「复盘学习」

强化学习的本质是,某次行动表现良好(糟糕),就略微提升(降低)未来类似行动的概率。

这种方法通过验证函数,比显示监督取得了更大的杠杆效应,无疑是其强大之处。

然而, 在Karpathy看来,从长远角度来讲,强化学习或许并不是最优策略。

长时程任务,RL局限显现

首先,一旦任务交互时间增加到几分钟乃至几小时,RL就遇到了挑战。

想象一下,一个数小时交互的任务,最终却只得到一个单一的标量奖励,来调整整个过程的梯度。

这样的反馈,能否足以支撑高效学习?

图片

RL机制与人类差异显著

其次,对于大多数智能任务而言,这感觉并不像人类的进步机制。

简言之,RL的机制与人类智能提升方式,存在着显著的差异。

人类会通过一个复盘/反思阶段,从每一次推演中能提取到多得多的监督信息,比如「哪里做得好?哪里不太行?下次该试试什么?」等等。

从这个阶段得到的教训感觉是明确的,就像一个新字符串,可以直接添加到未来的系统提示词里,也可以选择性地在之后被「蒸馏」成权重/直觉,有点像睡眠的作用。

在英语里,我们说通过这个过程,某件事会成为人的「第二天性」,而我们目前正缺少这样的学习范式。

这里,Karpathy提到了ChatGPT「记忆」功能,或许就是这种机制概念的一个雏形,尽管它目前只用于个性化,而非解决问题。

值得注意的是,在Atari游戏这类RL场景中也不存在类似的机制,因为那些领域里没有大语言模型,也没有上下文学习。

图片

算法新设想:回顾-反思范式


为此,Karpathy提出了一个算法框架——

给定一个任务,先跑几次推演,然后把所有推演过程(包括每次的奖励)都塞进一个上下文,再用一个元提示词来复盘/反思哪些地方做得好或不好,从而提炼出一个字符串形式的「教训」,并将其添加到系统提示词中(或者更通用地,更新当前的教训数据库)。

不过,他表示,这里面有很多细节要填充,有很多地方可以调整,具体怎么做并不简单。

举个栗子,大模型计数问题。

我们知道,由于分词(tokenization)的原因,大模型不太容易识别单个字母,也不太容易在残差流里计数。

所以,众所周知,模型很难识别出「strawberry」里的「r」字母。

图片

Claude的系统提示词里就加入了一个「快速修复」patch——添加了一段话,大意是:「如果用户让你数字母,你得先用逗号把字母隔开,每隔一个就给一个显式计数器加一,照这样做完任务」。

这段话就是「教训」,它明确地指导模型如何完成计数任务。

但问题在于,这种教训要如何从智能体的实践中自发产生,而不是由工程师硬编码进去?它该如何被泛化?

以及,这些教训如何随着时间推移被蒸馏,从而避免让上下文窗口无限膨胀?

最后,他总结道,RL会带来更多收益,如果应用得当,它的杠杆效应巨大。

并且,深受「惨痛教训」(bitter lesson)理论的启发,RL优于监督微调(SFT)。

但它并不是完整的答案,尤其是随着推演的流程越来越长。

在这之后,还有更多的S型增长曲线等待发现,这些曲线可能专属于大语言模型,在游戏/机器人这类环境中没有先例,而这,正是我觉得激动人心的地方。

OpenAI研究科学家Noam Brown对此深表赞同,「确实,未来仍有许多研究工作有待完成」。

图片

AI初创公司联创Yuchen Jin提出了一个有趣的观点,全新训练范式——课程学习,是一个自监督记忆+检索+反思的反馈循环,无需任何外部奖励信号。

图片

一位网友很有见地称,强化学习实际上是暴力试错的一种方法,并非是明智的策略。

图片


图片
放弃无效RL研究

最近,关于强化学习的讨论,成为了AI圈的一大热点。

除了Karpathy本人下场,上周前OpenAI研究员Kevin Lu发长文称,Transformer只是配角,放弃无效RL研究!

图片

他直言,真正推动AI规模跃迁的技术是互联网,而非Transformer,这也是你应该停止RL研究,转投产品开发的原因。

众所周知数据才是AI最重要的要素,但研究者们却往往选择回避这个领域...

究竟什么才是规模化地做数据?

互联网提供了天然的数据宝库:海量且多样化的数据源、自然形成的学习路径、反映人类真实需求的能力维度,以及可经济高效规模化部署的技术特性——

它成为下一个token预测的完美搭档,构成了AI爆发的原始汤池。


图片

没有Transformer,我们本可以用CNN或状态空间模型达到GPT-4.5的水平。

但自GPT-4之后,基础模型再未出现突破性进展。

专用推理模型在垂直领域表现优异,却远不及2023年3月GPT-4带来的震撼级跨越(距今已两年多...)。

RL确实成就斐然,但Kevin Lu对此深切担忧,研究者会重蹈2015-2020年间RL研究的覆辙——沉迷于无关紧要的学术游戏。

如果说互联网是监督预训练的时代搭档,那么什么才能成为强化学习的「共生体」,催生出GPT-1到GPT-4量级的飞跃?

Kevin Lu认为答案在于:研究-产品协同设计。

图片
参考资料:
https://x.com/karpathy/status/1944435412489171119

☟☟☟

☞人工智能产业链联盟筹备组征集公告☜


精选报告推荐:

11份清华大学的DeepSeek教程,全都给你打包好了,直接领取:


【清华第一版】DeepSeek从入门到精通

【清华第二版】DeepSeek如何赋能职场应用?


【清华第三版】普通人如何抓住DeepSeek红利?

【清华第四版】DeepSeek+DeepResearch让科研像聊天一样简单?

【清华第五版】DeepSeek与AI幻觉

【清华第六版】DeepSeek赋能家庭教育

【清华第七版】文科生零基础AI编程:快速提升想象力和实操能力

【清华第八版】DeepSeek政务场景应用与解决方案

【清华第九版】迈向未来的AI教学实验

【清华第十版】DeepSeek赋能品牌传播与营销

【清华第十一版】2025AI赋能教育:高考志愿填报工具使用指南

 10份北京大学的DeepSeek教程

【北京大学第一版】DeepSeek与AIGC应用

【北京大学第二版】DeepSeek提示词工程和落地场景

【北京大学第三版】Deepseek 私有化部署和一体机

【北京大学第四版】DeepSeek原理与落地应用

【北京大学第五版】Deepseek应用场景中需要关注的十个安全问题和防范措施

【北京大学第六版】DeepSeek与新媒体运营

【北京大学第七版】DeepSeek原理与教育场景应用报告

【北京大学第八版】AI工具深度测评与选型指南

【北京大学第九版】AI+Agent与Agentic+AI的原理和应用洞察与未来展望

【北京大学第十版】DeepSeek在教育和学术领域的应用场景与案例(上中下合集)

8份浙江大学的DeepSeek专题系列教程

浙江大学DeepSeek专题系列一--吴飞:DeepSeek-回望AI三大主义与加强通识教育

浙江大学DeepSeek专题系列二--陈文智:Chatting or Acting-DeepSeek的突破边界与浙大先生的未来图景

浙江大学DeepSeek专题系列三--孙凌云:DeepSeek:智能时代的全面到来和人机协作的新常态

浙江大学DeepSeek专题系列四--王则可:DeepSeek模型优势:算力、成本角度解读

浙江大学DeepSeek专题系列五--陈静远:语言解码双生花:人类经验与AI算法的镜像之旅

浙江大学DeepSeek专题系列六--吴超:走向数字社会:从Deepseek到群体智慧

浙江大学DeepSeek专题系列七--朱朝阳:DeepSeek之火,可以燎原

浙江大学DeepSeek专题系列八--陈建海:DeepSeek的本地化部署与AI通识教育之未来

4份51CTO的《DeepSeek入门宝典》

51CTO:《DeepSeek入门宝典》:第1册-技术解析篇

51CTO:《DeepSeek入门宝典》:第2册-开发实战篇

51CTO:《DeepSeek入门宝典》:第3册-行业应用篇

51CTO:《DeepSeek入门宝典》:第4册-个人使用篇

5份厦门大学的DeepSeek教程

【厦门大学第一版】DeepSeek大模型概念、技术与应用实践

【厦门大学第二版】DeepSeek大模型赋能高校教学和科研

【厦门大学第三版】DeepSeek大模型及其企业应用实践

【厦门大学第四版】DeepSeek大模型赋能政府数字化转型

【厦门大学第五版】DeepSeek等大模型工具使用手册-实战篇

10份浙江大学的DeepSeek公开课第二季专题系列教程

【精选报告】浙江大学公开课第二季:《DeepSeek技术溯源及前沿探索》(附PDF下载)

【精选报告】浙江大学公开课第二季:2025从大模型、智能体到复杂AI应用系统的构建——以产业大脑为例(附PDF下载)

【精选报告】浙江大学公开课第二季:智能金融——AI驱动的金融变革(附PDF下载)

【精选报告】浙江大学公开课第二季:人工智能重塑科学与工程研究(附PDF下载)

【精选报告】浙江大学公开课第二季:生成式人工智能赋能智慧司法及相关思考(附PDF下载)

【精选报告】浙江大学公开课第二季:AI大模型如何破局传统医疗(附PDF下载)

【精选报告】浙江大学公开课第二季:2025年大模型:从单词接龙到行业落地报告(附PDF下载)

【精选报告】浙江大学公开课第二季:2025大小模型端云协同赋能人机交互报告(附PDF下载)

【精选报告】浙江大学公开课第二季:DeepSeek时代:让AI更懂中国文化的美与善(附PDF下载)

【精选报告】浙江大学公开课第二季:智能音乐生成:理解·反馈·融合(附PDF下载)

6份浙江大学的DeepSeek公开课第三季专题系列教程

【精选报告】浙江大学公开课第三季:走进海洋人工智能的未来(附PDF下载)

【精选报告】浙江大学公开课第三季:当艺术遇见AI:科艺融合的新探索(附PDF下载)

【精选报告】浙江大学公开课第三季:AI+BME,迈向智慧医疗健康——浙大的探索与实践(附PDF下载)

【精选报告】浙江大学公开课第三季:心理学与人工智能(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能赋能交通运输系统——关键技术与应用(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能与道德进步(附PDF下载)


相关阅读

干货推荐:
AI加油站】第一部:《大型语言模型应用检索增强生成:改变搜索、推荐和 AI 助手》附下载
【AI加油站】第二部:《程序员的自我修炼手册》(附下载)
【AI加油站】第三部:《大规模语言模型:从理论到实践》(附下载)
【AI加油站】第四部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第五部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第六部:《时间序列:建模、计算与推断》(附下载)
【AI加油站】第七部:《因果关系的逻辑理论的好书-A Logical Theory of Causality》(附下载)

【AI加油站】第八部:《模式识别(第四版)-模式识别与机器学习》(附下载)

【AI加油站】第九部:《Python深度学习(中文版)》(附下载)
【AI加油站】第十部:《机器学习方法》(附下载)
【AI加油站】第十一部:《深度学习》(附下载)
【AI加油站】第十二部:《从零开始的机器学习》(附下载)
【AI加油站】第十三部:《Transformer入门到精通》(附下载)
【AI加油站】第十四部:《LLM 应用开发实践笔记》(附下载)
【AI加油站】第十五部:《大模型基础 完整版》(附下载)
【AI加油站】第十六部:《从头训练大模型最佳实践》(附下载)
【AI加油站】第十七部:《大语言模型》(附下载)
【AI加油站】第十八部:《深度强化学习》(附下载)
【AI加油站】第十九部:清华大学《大模型技术》(附下载)
【AI加油站】第二十部:Prompt入门神书-《Prompt 学习指南》(附下载)
【AI加油站】第二十一部:吴恩达&open AI联合推出《大模型通关指南》(附下载)
【AI加油站】第二十二部:《李宏毅深度学习教程》值得反复阅读的神书!(附下载)
【AI加油站】第二十三部:Prompt经典中文教程-《提示工程指南》(附下载)
【AI加油站】第二十四部:爆火下载28万次!MIT最新神书《理解深度学习》(附下载)
【AI加油站】第二十五部:LLM4大名著,OpenAI专家强推《深度解析:大语言模型理论与实践》(附下载)
【AI加油站】第二十六部:NLP大牛Thomas Wolf等新书《Transformer自然语言处理》(附下载)
【AI加油站】第二十七部:哈工大博士耗时一年整理《PyTorch常用函数手册》,轻松掌握PyTorch的各种操作(附PDF下载)
【AI加油站】第二十八部:大模型炼丹大师必备《深度学习调优指南中文版-系统性优化模型》(附下载)
【AI加油站】第二十九部:炸裂发布!《大语言模型:导论》重磅发布!(附下载)
【AI加油站】第三十部:最值得读的LLM书!下载量10w+!《基于Transformer和扩散模型的生成式AI》(附下载)
面试推荐:
【AI加油站】AI面试专题一:BIO,NIO,AIO,Netty面试题(附下载)
【AI加油站】AI面试专题二:Git常用命令面试题(附下载)
【AI加油站】AI面试专题三:Java常用面试题(附下载)
【AI加油站】AI面试专题四:Linux系统的面试题集(附下载)
【AI加油站】AI面试专题五:Memcached 面试题集(附下载)
【AI加油站】AI面试专题六:MyBatis框架的面试题(附下载)
【AI加油站】AI面试专题七:MySQL相关的面试题资料(附下载)
【AI加油站】AI面试专题八:Netty面试题资料(附下载)
【AI加油站】AI面试专题九:Nginx的面试题资料(附下载)
【AI加油站】AI面试专题十:RabbitMQ的面试题资料(附下载)
【AI加油站】AI面试专题十一:Redis的面试题资料(附PDF下载)
【AI加油站】AI面试专题十二:Spring的面试题资料(附PDF下载)
【AI加油站】AI面试专题十三:Apache Tomcat的面试题资料(附PDF下载)
【AI加油站】AI面试专题十四:Zookeeper的面试题资料(附PDF下载)
【AI加油站】AI面试专题十五:《阿里巴巴Java开发手册》终极版的面试题资料(附PDF下载)
【AI加油站】AI面试专题十六:大数据技术面试题资料(附PDF下载)
【AI加油站】AI面试专题十七:Java并发多线程面试题资料(附PDF下载)
【AI加油站】AI面试专题十八:设计模式的面试题资料(附PDF下载)

人工智能产业链联盟高端社区




图片
精选主题推荐:
Manus学习手册
从零开始了解Manus

DeepSeek 高级使用指南,建议收藏

一次性说清楚DeepSeek,史上最全(建议收藏)

DeepSeek一分钟做一份PPT

用DeepSeek写爆款文章?自媒体人必看指南

【5分钟解锁DeepSeek王炸攻略】顶级AI玩法,解锁办公+创作新境界!

DeepSeek接入个人微信!24小时智能助理,随时召唤!
PS×Deepseek:一句话编写PS脚本,搞定PS批量导出图层
如何让AI给自己打工,10分钟创作一条爆款视频?
荐:
【中国风动漫】《姜子牙》刷屏背后,藏着中国动画100年内幕!
【中国风动漫】除了《哪吒》,这些良心国产动画也应该被更多人知道!

【中国风动漫】《雾山五行》大火,却很少人知道它的前身《岁城璃心》一个拿着十米大刀的男主夭折!

图片
声明

免责声明:部分文章和信息来源于互联网,不代表本订阅号赞同其观点和对其真实性负责。如转载内容涉及版权等问题,请立即与小编联系(微信号:913572853),我们将迅速采取适当的措施。本订阅号原创内容,转载需授权,并注明作者和出处。如需投稿请与小助理联系(微信号:AI480908961)

编辑:Zero

图片


图片
图片

图片